121 Tech Drive Sanford, FL 32771 (407) 322-4000 Fax: (407) 321-9700 www.hernonmfg.com

Technical Data Sheet Quantum® 126

June 2008

Page 1 of 3

Product Description

Hernon® Quantum® 126 is a single component cyanoacrylate adhesive that cures to a tough polymer with excellent resistance to impact, peel, thermal shock and cleavage.

Typical Applications

- For parts that are exposed to shock and vibration
- For parts that will be exposed to thermal shock
- Bonds most rubber, plastic, and metal substrates
- For slower fixture and cure speed.

Product Benefits

- Single component: no mixing or measuring
- · Good shock and impact resistance
- Cures at room temperature
- Easy to apply
- Adheres to a wide range of material

Typical Properties (Uncured)

Property	Value		
Chemical Type	Ethyl Cyanoacrylate		
Appearance	Clear liquid		
Viscosity @ 77°F (25°C), cP	250 to 300		
Specific gravity	1.06		
Flash point	See MSDS		

Typical Properties (Cured)

Cured 24 Hours @ 22°C

Physical Properties

Property	Value		
Coefficient of thermal expansion, K ⁻¹ , ASTM D696	100 × 10 ⁻⁶		
Coefficient of thermal conductivity, W/(m·K), ASTM C177	0.1		
Temperature range, °C, (°F)	-54 to 110 (-65 to 230)		
Gap Fill, mm (in.) 0.15 (0.006)			

Electrical Properties

Property	Value
Dielectric Strength, kV/mm ASTM D149	25
Dielectric Constant @ 0.10 kHz ASTM D150 1 kHz 10 kHz	2.3 2.3 2.3
Dissipation Factor @ 0.10 kHz ASTM D150 1 kHz 10 kHz	< 0.02 < 0.02 < 0.02
Volume Resistivity, Ω⋅cm ASTM D257	1 × 10 ¹⁶
Surface Resistivity, Ω ASTM D257	4 × 10 ¹⁶

Typical Curing Performance

Cure Speed vs. Substrate

The rate of cure will depend on the substrate used. The table below shows the fixture time achieved on different materials at 22° C / 50% relative humidity. Fixture time is defined as the time to develop a shear strength of 0.1 N/mm².

Substrate	Fixture Time (seconds)		
Steel	60 to 120		
Aluminum	10 to 30		
Neoprene	15 to 25		
Nitrile Rubber	15 to 25		
ABS	20 to 50		
PVC	50 to 100		
Polycarbonate	30 to 90		
Phenolic	20 to 60		

Cure Speed vs. Bond Gap

The rate of cure will depend on the bondline gap. Thin bond lines result in high cure speeds, increasing the bond gap will decrease the rate of cure.

Cure Speed vs. Accelerator

Where cure speed is unacceptably long due to large gaps, applying Hernon® EFTM Accelerator 48 or 52 to the surface will improve cure speed. However, this can reduce ultimate strength of the bond and therefore testing is recommended to confirm effect.

Typical Cured Performance

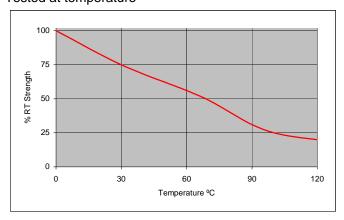
Shear Strength

Cured 24 Hours @ 22°C - tested according to ISO 4587

Cured 24 Hours @ 22 C - tested according to 150 4567			
Substrate	Shear Strength N/mm² (psi)		
Steel	26.1 (3780)		
Aluminum	18.3 (2660)		
ABS	>5.9 (>850)		
PVC	>4.1 (>600)		
Polycarbonate	>4.8 (>700)		
Phenolic	>10.0 (>1450)		
Neoprene	>10.0 (>1450)		
Nitrile	>10.0 (>1450)		

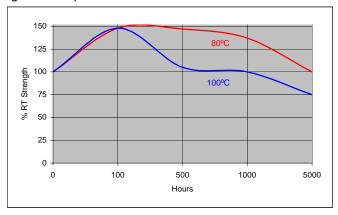
Tensile Strength

Tested according to ISO 6922


Substrate	Cure Time @ 22°C	Tensile Strength N/mm² (psi)
Steel	24 hours	18.6 (2700)

Typical Environmental Resistance

Cured for 1 week @ 22°C Shear Strength, ISO 4587 Steel lap-shear specimens


Hot Strength

Tested at temperature

Heat Aging

Aged at temperature indicated and tested at 22°C

Chemical/Solvent Resistance

Aged under condition indicated - Tested at 72°F (22°C).

	Temp	% of Initial Strength		
Chemical/Solvent	(°C)	100h	500h	1000h
Motor Oil	40	87	87	87
Gasoline	22	90	75	75
Ethanol	22	95	95	95
Isopropanol	22	75	75	75
1,1,1 Trichloroethane	22	80	70	55

General Information

This product is not recommended for use in pure oxygen and/or oxygen rich systems and should not be selected as a sealant for chlorine or other strong oxidizing materials.

For safe handling information on this product, consult the Material Safety Data Sheet (MSDS).

Directions For Use

For best performance bond surfaces should be clean and free from grease. This product performs best in thin bond gaps (0.05 mm).

Stress Cracking

Uncured adhesive can cause stress cracking to some plastics in stressed conditions. Examples are polysulfides, acrylics and polycarbonates. This condition can be reduced by the following methods:

- Use of reinforced grades of plastics which are more resistant to chemical attack.
- Use accelerator to speed fixture/cure time of adhesive.
- Close joint quickly to avoid prolonged exposure to liquid adhesive.

Disassembly and Cleanup

Liquid Cyanoacrylate should not be wiped with rags or tissue. The fabric will cause polymerization and large quantities of adhesive will heat or cure causing smoke and strong irritating vapors. Always flood with excess water to clean up spill conditions.

Storage

Cyanoacrylate adhesives must be stored under refrigeration at a temperature of $40^{\circ}\text{F} \pm 5^{\circ}\text{F}$ for extended shelf life. Before opening, the containers must be warmed to room temperature, otherwise, water may condense into the bottle and cause hardening of the adhesive. To prevent contamination of unused adhesive, do not return product to its original container.

Dispensing Equipment

Hernon[®] offers a complete line of semi and fully automated dispensing equipment. Contact **Hernon**[®] **Sales** for additional information.

These suggestions and data are based on information we believe to be reliable and accurate, but no guarantee of their accuracy is made. HERNON MANUFACTURING®, INC. shall not be liable for any damage, loss or injury, direct or consequential arising out of the use or the inability to use the product. In every case, we urge and recommend that purchasers, before using any product in full scale production, make their own tests to determine whether the product is of satisfactory quality and suitability for their operations, and the user assumes all risk and liability whatsoever, in connection therewith. Hernon's Quality Management System for the design and manufacture of high performance adhesives and sealants is registered to the ISO9001:2000 Quality Standard.