121 Tech Drive Sanford, FL 32771 (407) 322-4000 Fax: (407) 321-9700 www.hernonmfg.com

Page 1 of 3

Technical Data Sheet Quantum® 138

June 2008 Quantum 138

Product Description

Hernon® Quantum® 138 is a surface insensitive cyanoacrylate adhesive formulated to improve adhesion properties and fixture time as well as gap filling capabilities over conventional cyanoacrylate adhesives. This advanced formulation improves adhesion to difficult to bond plastics, wood, leather, ceramics, elastomers, and acidic surfaces such as freshly plated components.

Quantum® **138** is a state-of-art single component, solventless, room temperature curing adhesives that polymerize rapidly when pressed into a thin film between parts. The presence of surface moisture commences the cure of the adhesive. **Quantum**® **138** will develop handling strength within seconds and full cure within a few hours.

Typical Applications

Bonding

Rubber bumpers
Permanent locking of plastic

Fasteners

Speaker components

Shock mounts Gears to shaft

Wiper blades Acrylic windows Name plates

Catheters Honing stones

Security collars O-rings

insulation pads

Fixturing

Filter caps
Jumper wires
Heat sinks
Gaskets
Golf club parts
Tennis racquet parts
P.C. boards
Wire tacking

Potting

Transistors
Tamper proofing
Adjustable components
Fiberglass molds

Product Benefits

- Single component.
- 100% Solventless.
- Instant setting.
- Improved gap filling capability.
- · Improved adhesion to difficult to bond surfaces

Typical Properties (Uncured)

Property	Value		
Chemical Type	Modified Cyanoacrylate Ester		
Appearance	Clear Liquid		
Specific Gravity	1.13		
Viscosity, cP	Thixotropic Gel		
Flash Point	See MSDS		

Typical Properties (Cured)

Cured 24 Hours @ 22°C

Physical Properties

Property	Value
Coefficient of thermal expansion, K ⁻¹ , ASTM D696	80×10 ⁻⁶
Coefficient of thermal conductivity, W/(m·K), ASTM C177	0.1
Gap Fill, mm (in.)	0.254 (0.010)

Electrical Properties

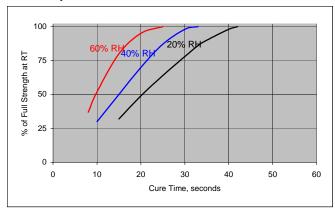
	Licetifical i roperties			
	Property		Value	
	Dielectric Strength, kV/mm ASTM D149		25	
	Dielectric Constant @ ASTM D150	0.10 kHz 1 kHz 10 kHz	2.65 2.75 2.65	
	Dissipation Factor @ ASTM D150	0.10 kHz 1 kHz 10 kHz	< 0.02 < 0.02 < 0.02	
	Volume Resistivity, Ω-cm ASTM D257		10×10 ¹⁵	
	Surface Resistivity, Ω ASTM D257		10×10 ¹⁵	

Typical Curing Performance

Under normal conditions, the atmospheric moisture initiates the curing process. Although full functional strength is developed in a relatively short time, curing continues for at least 24 hours before full chemical/solvent resistance is developed.

Cure Speed vs. Substrate

The rate of cure will depend on the substrate used. The table below shows the fixture time achieved on different materials at 22° C / 50% relative humidity. Fixture time is defined as the time to develop a shear strength of 0.1 N/mm².


Substrate	Fixture (seconds)	Substrate	Fixture (seconds)
Steel (degreased)	15	Neoprene	20
Aluminum	20	Nitrile Rubber	20
Zinc Dichromate	25	Teak	17
ABS	7	Pine	20
Phenolic	7	Paper	4
PVC	10	Fabric	13
Polycarbonate	20	Leather	20
G-10 Epoxy Glass	35		

Cure Speed vs. Bond Gap

The rate of cure will depend on the bondline gap. Thin bond lines result in high cure speeds, increasing the bond gap will decrease the rate of cure.

Cure Speed vs. Humidity

The rate of cure will depend on the ambient relative humidity. The following graph shows the tensile strength developed with time on Buna N rubber at different levels of humidity.

Cure Speed vs. Accelerator

Where cure speed is unacceptably long due to large gaps, applying accelerator to the surface will improve cure speed. However, this can reduce ultimate strength of the bond and therefore testing is recommended to confirm effect.

Typical Cured Performance

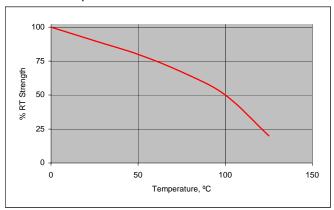
Shear Strength

Cured 24 Hours @ 22°C - tested according to ISO 4587

Curcu 24 Hours & 22 C tested according to 100 4507		
Substrate	Shear Strength N/mm² (psi)	
Steel (gritblasted)	17.9 to 26.2 (2600 to 3800)	
Aluminum (etched)	11.0 to 19.3 (1600 to 2800)	
Zinc Dichromate	4.1 to 10.3 (600 to 1500)	
ABS	6.2 to 20.0 (900 to 2900)	
PVC	6.2 to 20.0 (900 to 2900)	
Polycarbonate	5.0 to 20.0 (730 to 2900)	
Phenolic	5.0 to 15.2 (730 to 2200)	
Neoprene	5.0 to 15.2 (730 to 2200)	
Nitrile	5.0 to 15.2 (730 to 2200)	

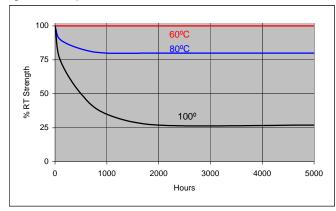
Tensile Strength

Tested according to ISO 6922


Substrate	Cure Time @ 22°C	Tensile Strength N/mm² (psi)
Buna-N	30 seconds	≥ 6.9 (≥ 1000)
Dana II	24 hours	12.1 to 25.2 (1750 to 3650)
Steel	24 hours	12.1 to 25.2 (1750 to 3650)

Typical Environmental Resistance

Cured for 1 week @ 22°C Shear Strength, ISO 4587 Steel lap-shear specimens


Hot Strength

Tested at temperature

Heat Aging

Aged at temperature indicated and tested at 22°C

Hernon Technical Data Sheet Quantum[®] 138

Chemical/Solvent Resistance

Aged under condition indicated - Tested at 72°F (22°C).

	Temp	% of Initial Strength		
Chemical/Solvent	(°C)	100h	500h	1000h
Motor Oil	40	85	85	75
Gasoline	22	100	100	100
Ethanol	22	100	100	100
Isopropanol	22	100	100	100
Freon TA	22	100	100	100

General Information

This product is not recommended for use in pure oxygen and/or oxygen rich systems and should not be selected as a sealant for chlorine or other strong oxidizing materials.

For safe handling information on this product, consult the Material Safety Data Sheet (MSDS).

Directions For Use

For best performance bond surfaces should be clean and free from grease. This product performs best in thin bond gaps (0.05 mm).

Disassembly and Cleanup

Liquid Cyanoacrylate should not be wiped with rags or tissue. The fabric will cause polymerization and large quantities of adhesive will heat or cure causing smoke and strong irritating vapors. Always flood with excess water to clean up spill conditions.

Storage

Cyanoacrylate adhesives must be stored under refrigeration at a temperature of $40^{\circ}\text{F} \pm 5^{\circ}\text{F}$ for extended shelf life. Before opening, the containers must be warmed to room temperature, otherwise, water may condense into the bottle and cause hardening of the adhesive. To prevent contamination of unused adhesive, do not return product to its original container.

Dispensing Equipment

Hernon[®] offers a complete line of semi and fully automated dispensing equipment. Contact **Hernon**[®] **Sales** for additional information.

These suggestions and data are based on information we believe to be reliable and accurate, but no guarantee of their accuracy is made. HERNON MANUFACTURING, INC. shall not be liable for any damage, loss or injury, direct or consequential arising out of the use or the inability to use the product. In every case, we urge and recommend that purchasers, before using any product in full scale production, make their own tests to determine whether the product is of satisfactory quality and suitability for their operations, and the user assumes all risk and liability whatsoever, in connection therewith. Hernon's Quality Management System for the design and manufacture of high performance adhesives and sealants is registered to the ISO9001:2000 Quality Standard.